References

Literature references are a necessary component for supporting key information. A list of references should therefore not be missing in a Readme file, Wiki, or eBook. The following list contains references that this eBook uses.

AW73

P Ackers and W R White. Sediment Transport: New approach and analysis. Journal of Hydraulics Division, 99(HY11):2041–2060, 1973.

AK87

A.A. Akanbi and N.D. Katopodes. Model for flood propagation on initially dry land. Journal of Hydraulic Engineering, 114(7):689–706, 1987. doi:10.1061/(ASCE)0733-9429(1988)114:7(689).

AG73

B.N. Aldridge and J.M. Garrett. Roughness coefficients for stream channels in arizona. U.S. Geological Survey Open-File Report, 73-3:1–38, 1973. URL: https://pubs.usgs.gov/of/1973/0003/report.pdf, doi:10.3133/ofr733.

AS89

G.J.Jr Arcement and V.R. Schneider. Guide for selecting manning's roughness coefficients for natural channels and flood plains. U.S. Geological Survey Water-Supply, Paper 2339:1–38, 1989. URL: https://pubs.usgs.gov/wsp/2339/report.pdf.

Ata12

Riadh Ata. TELEMAC-2D new finite volume schemes for shallow water equations with source terms on 2D unstructured grids. Proceedings of the XIXth TELEMAC-MASCARET User Conference 2012, 18 to 19 October 2012, St Hugh's College, Oxford, pages 93–98, 2012. URL: http://henry.baw.de/handle/20.500.11970/104290 (visited on 2021-06-24).

ABP00

E. Audusse, M. Bristeau, and B. Perthame. Kinetic Schemes for Saint-Venant Equations with Source Terms on Unstructured Grids. Research Report RR-3989, INRIA, 2000. Projet M3N. URL: https://hal.inria.fr/inria-00072657.

Bag66

R A Bagnold. An Approach to the Sediment Transport Problem from General Physics. In Geological Survey Professional Paper 422-I. U.S. Government, 1966.

Bag80

R A Bagnold. An empirical correlation of bedload transport rates in flume and natural rivers. Proceedings of the Royal Society of London, A(372):453–473, 1980. doi:10.1098/rspa.1980.0122.

Bat00

G. K. Batchelor. Equations Governing the Motion of a Fluid, pages 131–173. Cambridge Mathematical Library. Cambridge University Press, 2000. doi:10.1017/CBO9780511800955.005.

Bij92

E. W. Bijker. Mechanics of Sediment Transport by the Combination of Waves and Current. Technical Report, ICCE, Venice, Italy, 1992. URL: https://repository.tudelft.nl/islandora/object/uuid%3A4574aaa1-9246-4981-8305-c3a932e4ce03 (visited on 2021-08-06).

Blo08

Astrid Blom. Different approaches to handling vertical and streamwise sorting in modeling river morphodynamics. Water Resources Research, 2008. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005474 (visited on 2021-08-05), doi:10.1029/2006WR005474.

BRP03

Astrid Blom, Jan S. Ribberink, and Gary Parker. Sediment Continuity for Rivers with Non-Uniform Sediment, Dunes, and Bed Load Transport. In A. Gyr and W. Kinzelbach, editors, Sedimentation and Sediment Transport, 179–182. Dordrecht, Netherlands, 2003. Springer Netherlands. URL: https://link.springer.com/chapter/10.1007/978-94-017-0347-5_28, doi:10.1007/978-94-017-0347-5_28.

Bov86

Ken D. Bovee. Development and evaluation of Habitat Suitability Criteria for use in the instream flow incremental methodology. Technical Report 21, National Ecology Center, U.S. Fish and Wildlife Service, Fort Collins, CO, USA, September 1986. URL: https://pubs.er.usgs.gov/publication/70121265.

Bra74

P. Bradshaw. Possible origin of Prandt's mixing-length theory. Nature, 249(5453):135–136, May 1974. Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/249135b0, doi:10.1038/249135b0.

Bra87

P. Bradshaw. Turbulent Secondary Flows. Annual Review of Fluid Mechanics, 19(1):53–74, January 1987. Publisher: Annual Reviews. URL: https://www.annualreviews.org/doi/10.1146/annurev.fl.19.010187.000413, doi:10.1146/annurev.fl.19.010187.000413.

Bro49

C.B. Brown. Sediment Transport. In Hunter Rouse, editor, Engineering hydraulics: proceedings of the fourth Hydraulics conference, June 12-15, 1949, Hydraulics Conference. John Wiley and Sons, New York, NY, USA, 1949. URL: https://www.worldcat.org/title/engineering-hydraulics-proceedings-of-the-fourth-hydraulics-conference-iowa-institute-of-hydraulic-research-june-12-15-1949/oclc/802562429.

Buc15

E Buckingham. Model experiments and the forms of empirical equations. Transactions of the American Society of Mechanical Engineers, 37:263–296, 1915.

BH74

James R. Bunch and John E. Hopcroft. Triangular factorization and inversion by fast matrix multiplication. Mathematics of Computation, 28(125):231–236, 1974. URL: https://www.ams.org/mcom/1974-28-125/S0025-5718-1974-0331751-8/ (visited on 2021-06-25), doi:10.1090/S0025-5718-1974-0331751-8.

CC79

J. P. Chollet and J. A. Cunge. New Interpretation of Some Head Loss-Flow Velocity Relationships for Deformable Movable Beds. Journal of Hydraulic Research, 17(1):1–13, January 1979. Publisher: Taylor & Francis eprint: https://doi.org/10.1080/00221687909499596. URL: https://doi.org/10.1080/00221687909499596 (visited on 2021-08-02), doi:10.1080/00221687909499596.

Cho59

Ven Te Chow. Open-Channel Hydraulics. Civil Engineering. McGraw-Hill, Tokyo, Japan, 1959.

CF15

Michael Church and R I Ferguson. Morphodynamics: Rivers beyond steady state. Water Resources Research, 51:1883–1897, 2015. doi:10.1002/2014WR016862.

CH17

Michael Church and Judy K Haschenburger. What is the "active layer"? Water Resources Research, 53:5–10, 2017. doi:10.1002/2016WR019675.

Che76

Antoine de Chézy. Formula to find the uniform velocity that the water will have in a ditch or in a canal of which the slope is known. In Collection of Manuscripts in the Library of the Ecole des Ponts et Chaussées, volume 61 (No. 847) of Ms.1915, pages 165–269. École des Ponts et Chaussées, Paris, France, 1776.

CW37

C.F. Colebrook and C.M. White. Experiments with fluid friction in roughened pipes. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 161(906):367–381, 1937. Publisher: Royal Society. URL: https://royalsocietypublishing.org/doi/10.1098/rspa.1937.0150 (visited on 2021-06-25), doi:10.1098/rspa.1937.0150.

CTC+19

F. Cordier, P. Tassi, N. Claude, A. Crosato, S. Rodrigues, and D. Pham Van Bang. Numerical Study of Alternate Bars in Alluvial Channels With Nonuniform Sediment. Water Resources Research, 55(4):2976–3003, 2019. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017WR022420, doi:10.1029/2017WR022420.

CTC+20

Florian Cordier, Pablo Tassi, Nicolas Claude, Alessandra Crosato, Stéphane Rodrigues, and Damien Pham Van Bang. Bar pattern and sediment sorting in a channel contraction/expansion area: Application to the Loire River at Bréhémont (France). Advances in Water Resources, 140:103580, 2020. URL: https://www.sciencedirect.com/science/article/pii/S0309170819305214 (visited on 2021-08-03), doi:10.1016/j.advwatres.2020.103580.

Dey14

S Dey. Fluvial Processes: Meandering and Braiding. In Fluvial Hydrodynamics, GeoPlanet: Earth and Planetary Sciences, pages 529–562. Springer-Verlag, Berlin Heidelberg, 2014.

DB79

P Du Boys. Etudes du régime du Rhône et l 'action exercée par les eaux sur un lit à fond de graviers indéfiniment affouillable [Studies of the flow of the Rhone and the forces exerted by the waters on an indefinitely erodible gravel bed]. Annales des Ponts et Chaussées, 5(18):141–195, 1879.

Ein42

Hans Albert Einstein. Formulas for the Transportation of Bed Load. Transactions of the American Society of Civil Engineers, 107(1):561–577, 1942.

Ein50

Hans Albert Einstein. The Bed-Load Function for Sediment Transport in Open Channel Flows. Technical Bulletin of the USDA Soil Conservation Service, 1026:71, 1950. URL: https://ageconsearch.umn.edu/record/156389, doi:10.22004/ag.econ.156389.

EH67

F Engelund and E Hansen. A monograph on sediment transport in alluvial streams. TEKNISKFORLAG Skelbrekgade 4 Copenhagen V, Denmark., 1967.

Eng74

Frank Engelund. Flow and Bed Topography in Channel Bends. Journal of the Hydraulics Division, 100(11):1631–1648, November 1974. Publisher: American Society of Civil Engineers. URL: https://ascelibrary.org/doi/abs/10.1061/JYCEAJ.0004109 (visited on 2021-08-04), doi:10.1061/JYCEAJ.0004109.

Exn25

Felix M Exner. Über die Wechselwirkung zwischen Wasser und Geschiebe in Flüssen [About the Interdependency of Water and Bed load in Rivers]. Akademie der Wissenschaften in Wien, math.-naturw. Klasse, Sitzungsberichte, Abt. IIa, 134:165–203, 1925.

Fer07

Rob Ferguson. Flow resistance equations for gravel- and boulder-bed streams. Water Resources Research, 43:W05427, 2007. doi:10.1029/2006WR005422.

Fer12

Robert I Ferguson. River channel slope, flow resistance, and gravel entrainment thresholds. Water Resources Research, 48:1–13, 2012. doi:10.1029/2011WR010850.

FC11

Philippe Frey and Michael Church. Bedload: a granular phenomenon. Earth Surface Processes and Landforms, 36(1):58–69, 2011. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/esp.2103 (visited on 2021-08-05), doi:10.1002/esp.2103.

GML13

C. Gifford-Miears and A. Leon. Tutorial on the use of TELEMAC-2D Hydrodynamics model and Pre-/Post-processing with BlueKenue for flood-inundation mapping in Unsteady Flow Conditions. Oregon State University, Corvallis, USA, 2013. URL: https://web.eng.fiu.edu/arleon/courses/Transient_flows/Tutorials/TELEMAC_2D/TELEMAC_2D_Tutorial_Baxter.pdf.

Goond

Google. Google Satellite imagery. nd. URL: https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}.

Gre08

Carlo Gregoretti. Inception Sediment Transport Relationships at High Slopes. Journal of Hydraulic Engineering, 134(11):1620–1629, 2008. doi:10.1061/(ASCE)0733-9429(2008)134:11(1620).

GHW06

Peter G. Griffiths, Richard Hereford, and Robert H. Webb. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A. Geomorphology, 74(1):232–244, March 2006. URL: https://www.sciencedirect.com/science/article/pii/S0169555X05002722 (visited on 2021-07-27), doi:10.1016/j.geomorph.2005.07.017.

Guo02

Junke Guo. Logarithmic matching and its applications in computational hydraulics and sediment transport. Journal of Hydraulic Research, 40(5):555–565, 2002. URL: https://doi.org/10.1080/00221680209499900, doi:10.1080/00221680209499900.

Gut07

M. H. Gutknecht. A brief introduction to krylov space methods for solving linear systems. In Yukio Kaneda, Hiroshi Kawamura, and Masaki Sasai, editors, Frontiers of computational science, pages 53–62. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, 2007. URL: https://link.springer.com/chapter/10.1007%2F978-3-540-46375-7_5.

Haa83

S. E. Haaland. Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow. Journal of Fluids Engineering, 105(1):89–90, 1983. URL: https://doi.org/10.1115/1.3240948 (visited on 2021-06-25), doi:10.1115/1.3240948.

Hag10

Willi H Hager. Wastewater Hydraulics, Theory and Practice, Second Edition. Springer-Verlag, Berlin, Heidelberg, 2010.

HS09

Willi H Hager and Anton J Schleiss. Constructions hydrauliques [Hydraulic structures]. Volume 15. Presses polytechniques et universitaires romandes, 2009.

HAG14

Jean Michel Hervouet, Riadh Ata, and Cédric Goeury. User manual of opensource software Telemac 2d. usermanT2D, EDF-R&D, France, 2014. version: v7p0. URL: http://www.openmascaret.org (visited on 2020-09-21).

Hir71

Muneo Hirano. River-Bed Degradation with Armoring. Proceedings of the Japan Society of Civil Engineers, 1971(195):55–65, 1971. doi:10.2208/jscej1969.1971.195_55.

HN07

He Qing Huang and Gerald C. Nanson. Why some alluvial rivers develop an anabranching pattern. Water Resources Research, 43(W07441):1–12, 2007. doi:10.1029/2006WR005223.

HVH10

Nicolas Huybrechts, Catherine Villaret, and Jean-Michel Hervouet. Comparison between 2D and 3D modelling of sediment transport: application to the dune evolution. River Flow 2010, pages 887–894, 2010. URL: http://henry.baw.de/handle/20.500.11970/99731 (visited on 2021-08-04).

Kle05

Maarten G. Kleinhans. Dune-Phase Fluvial Transport and Deposition Model of Gravelly Sand. In Fluvial Sedimentology VII, International Conference on Fluvial Sedimentology, pages 75–97. John Wiley & Sons, Ltd, Lincoln, NE, USA, 2005. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781444304350.ch5 (visited on 2021-08-05).

KF80

F.G. Koch and C. Flokstra. Bed level computations for curved alluvial channels. In Proceedings of the XIXth Congress of the Int. Ass. for Hydr. Res. New Delhi, India, 1980.

Kra32

H Kramer. Modellgeschiebe und Schleppkraft [Modelling bed load and drag force]. Volume 9. Preuß ische Versuchsanstalt für Wasserbau und Schiffbau, 1932.

Kro62

R.B. Krone. Flume studies of the transport of sediment in estuarial shoaling processes final report. PhD thesis, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley, CA, USA, 1962. Principal investigators: H.A. Einstein, W.J. Kaufman, G.T. Orlob. URL: http://catalog.hathitrust.org/api/volumes/oclc/8967084.html (visited on 2021-08-06).

KC08

PK Kundu and IM Cohen. Fluid Mechanics. Elsevier Inc., San Diego, CA, USA, 4th edition, 2008. ISBN 978-0-12-373735-9.

LDV08

Michael P Lamb, William E Dietrich, and Jeremy G Venditti. Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope? Journal of Geophysical Research, 113(F2):F02008, 2008. doi:10.1029/2007JF000831.

LS74

B.E. Launder and D.B. Spalding. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2):269–289, March 1974. URL: https://www.sciencedirect.com/science/article/pii/0045782574900292, doi:10.1016/0045-7825(74)90029-2.

Mac80

C.E. Mackenzie. Coded-Character Sets: History and Development. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980. ISBN 0201144603. URL: https://textfiles.meulie.net/bitsaved/Books/Mackenzie_CodedCharSets.pdf.

Man91

R. Manning. Transactions of the Institution of Civil Engineers of Ireland. Volume 20. Civil Engineers of Ireland, 1891.

MAL+17

Alejandro Mendoza, Jorge D. Abad, Eddy J. Langendoen, Dongchen Wang, Pablo Tassi, and Kamal El Kadi Abderrezzak. Effect of Sediment Transport Boundary Conditions on the Numerical Modeling of Bed Morphodynamics. Journal of Hydraulic Engineering, 143(4):04016099, 2017. Publisher: American Society of Civil Engineers. URL: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HY.1943-7900.0001208 (visited on 2021-08-04), doi:10.1061/(ASCE)HY.1943-7900.0001208.

MPM48

E Meyer-Peter and R Müller. Formulas for Bed-Load transport. IAHSR, appendix 2, 2nd meeting:39–65, 1948. URL: http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7.

ML16

Erik Mosselman and Thai Binh Le. Five common mistakes in fluvial morphodynamic modeling. Advances in Water Resources, 93:15–20, 2016. URL: http://www.sciencedirect.com/science/article/pii/S0309170815001761, doi:10.1016/j.advwatres.2015.07.025.

NK96

Gerald C. Nanson and A. David Knighton. Anabranching Rivers: Their cause, character and classification. Earth Surface Processes and Landforms, 21(3):217–239, 1996. doi:10.1002/(SICI)1096-9837(199603)21:3$<$217::AID-ESP611$>$3.0.CO;2-U.

NN93

Iehisa Nezu and Hiroji Nakagawa. Turbulence in Open-Channel Flows. Routledge, London, UK, 1 edition, 1993. ISBN 978-0-203-73490-2. doi: 10.1201/9780203734902. URL: https://doi.org/10.1201/9780203734902.

Nik33

Johann Nikuradse. Strömungsgesetze in rauhen Rohren [Laws of flow in rough pipes]. VDI Forschungsheft, Beilage zu 'Forschung auf dem Gebiete des Ingenieurwesens', Ausgabe B, Band 4(361):26, 1933.

NSW13

M. Noack, M. Schneider, and S. Wieprecht. Ecohydraulics: an integrated approach. Wiley-Blackwell, Chichester, UK, 2013. ISBN 978-0-470-97600-5. URL: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118526576.

Pai92

John N Paine. Open-Channel Flow Algorithm in Newton-Raphson Form. Journal of Irrigation and Drainage Engineering, 118(2):306–319, 1992.

Par90

G. Parker. Surface-based bedload transport relation for gravel rivers. Journal of Hydraulic Research, 28(4):417–436, 1990. Publisher: Taylor & Francis. URL: https://doi.org/10.1080/00221689009499058, doi:10.1080/00221689009499058.

Par65

Emmanuel Partheniades. Erosion and Deposition of Cohesive Soils. Journal of the Hydraulics Division, 91(1):105–139, 1965. Publisher: ASCE. URL: https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0013640 (visited on 2021-08-06).

PW17

Gregory B. Pasternack and Joshua R. Wyrick. Flood-driven topographic changes in a gravel-cobble river over segment, reach, and morphological unit scales. Earth Surface Processes and Landforms, 42(3):487–502, 2017. URL: http://dx.doi.org/10.1002/esp.4064, doi:10.1002/esp.4064.

PR17

Guillaum Piton and Alain Recking. The concept of travelling bedload and its consequences for bedload computation in mountain streams. Earth Surface Processes and Landforms, (\textit in press):52, 2017. doi:10.1002/esp.4105.

Pit16

Guillaume Piton. Sediment control by check dams and open check dams in Alpine torrents. PhD Thesis, Irstea Grenoble - Equipe ETNA: Erosion Torrentielle, Neige et Avalanches, 2016.

Pot77

Kenneth W. Potter. Sequent Peak Procedure: Minimum Reservoir Capacity Subject to Constraint on Final Storage. JAWRA Journal of the American Water Resources Association, 13(3):521–528, 1977. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.1977.tb05564.x (visited on 2021-06-07), doi:10.1111/j.1752-1688.1977.tb05564.x.

PS83

G.T. Proffitt and A.J. Sutherland. Transport of Non-Uniform Sediments. Journal of Hydraulic Research, 21(1):33–43, 1983. Publisher: Taylor & Francis. URL: https://doi.org/10.1080/00221688309499448 (visited on 2021-08-03), doi:10.1080/00221688309499448.

RBKR13

F. Ravelet, F. Bakir, S. Khelladi, and R. Rey. Experimental study of hydraulic transport of large particles in horizontal pipes. Experimental Thermal and Fluid Science, 45:187–197, February 2013. URL: https://www.sciencedirect.com/science/article/pii/S089417771200310X (visited on 2021-08-05), doi:10.1016/j.expthermflusci.2012.11.003.

RFP+08

Alain Recking, P Frey, A Paquier, P Belleudy, and J Y Champagne. Bed-Load Transport Flume Experiments on Steep Slopes. Journal of Hydraulic Engineering, 134:1302–1310, 2008. doi:10.1061/(ASCE)0733-9429(2008)134:9(1302).

Ren97

K.G. Renard. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Technical Report 703, United States Department of Agriculture, Washington, D.C., USA, 1997. URL: https://www.ars.usda.gov/arsuserfiles/64080530/rusle/ah_703.pdf.

RR11

Dieter Rickenmann and Alain Recking. Evaluation of flow resistance in gravel-bed rivers through a large field data set. Water Resources Research, 47:W07538, 2011. URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010WR009793card, doi:10.1029/2010WR009793.

RC07

Van Rijn and Leo C. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport. Journal of Hydraulic Engineering, 133(6):649–667, 2007. Publisher: American Society of Civil Engineers. URL: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%282007%29133%3A6%28649%29 (visited on 2021-08-04), doi:10.1061/(ASCE)0733-9429(2007)133:6(649).

Rip83

W Rippl. The capacity of storage-reservoirs for water-slpply. (including plate). Minutes of the Proceedings of the Institution of Civil Engineers, 71(1883):270–278, January 1883. Publisher: ICE Publishing. URL: https://www.icevirtuallibrary.com/doi/10.1680/imotp.1883.21797 (visited on 2021-06-07), doi:10.1680/imotp.1883.21797.

RPLV17

J Riquier, Hervé Piégay, Nicolas Lamouroux, and Lise Vaudor. Are restored side channels sustainable aquatic habitat features? Predicting the potential persistence of side channels as aquatic habitats based on their fine sedimentation dynamics. Geomorphology, 295(Supplement C):507–528, 2017. doi:10.1016/j.geomorph.2017.08.001.

Roe81

P.L Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2):357–372, 1981. URL: https://www.sciencedirect.com/science/article/pii/0021999181901285, doi:10.1016/0021-9991(81)90128-5.

Rou39

Hunter Rouse. An analysis of sediment transportation in the light of fluid turbulence. Soil Conservation Report No. SCS-TP-25 of the USDA, 1939.

Rou65

Hunter Rouse. Critical Analysis of Open-Channel Resistance. Journal of the Hydraulics Division, 91(HY4):1–25, 1965.

Sch17

Sebastian Schwindt. Hydro-morphological processes through permeable sediment traps. Thesis No. 7655, Laboratory of Hydraulic Constructions (LCH), Ecole Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2017. URL: https://infoscience.epfl.ch/record/231182, doi:10.5075/epfl-thesis-7655.

She96

Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational Geometry Towards Geometric Engineering, Lecture Notes in Computer Science, 203–222. Berlin, Heidelberg, 1996. Springer. URL: https://link.springer.com/chapter/10.1007/BFb0014497, doi:10.1007/BFb0014497.

Shi36

A Shields. Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung [Application of the similarity in mechanics and turbulence research on the mobility of bed load]. Volume 26. Preußische Versuchsanstalt für Wasserbau und Schiffbau, Berlin, Germany, 1936. URL: http://resolver.tudelft.nl/uuid:61a19716-a994-4942-9906-f680eb9952d6.

Sma63

J. Smagorinsky. General Circulation Experiments with the Primitive Equations: I. The Basic Experiment. Monthly Weather Review, 91(3):99–164, March 1963. Publisher: American Meteorological Society. URL: https://journals.ametsoc.org/view/journals/mwre/91/3/1520-0493_1963_091_0099_gcewtp_2_3_co_2.xml, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

SJ83

Graeme M Smart and Martin N R Jaeggi. Sedimenttransport in steilen Gerinnen [Sediment Transport on Steep Slopes]. Mitteilung Nr. 64 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der Eidgenössischen Technischen Hochschule Zürich, Zürich, 1983. URL: https://ethz.ch/content/dam/ethz/special-interest/baug/vaw/vaw-dam/documents/das-institut/mitteilungen/1980-1989/064.pdf.

Sou97

Richard Soulsby. Dynamics of marine sands. Thomas Telford Publishing, University of Southampton, UK, 1997. doi: 10.1680/doms.25844 eprint: https://www.icevirtuallibrary.com/doi/pdf/10.1680/doms.25844. URL: https://www.icevirtuallibrary.com/doi/abs/10.1680/doms.25844.

SA92

P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic flows. In 30th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, pages 22. American Institute of Aeronautics and Astronautics, Reno, NV, USA, January 1992. URL: https://arc.aiaa.org/doi/10.2514/6.1992-439 (visited on 2021-07-06).

SV60

E. A. Spiegel and G. Veronis. On the Boussinesq Approximation for a Compressible Fluid. The Astrophysical Journal, 131:442, March 1960. URL: https://ui.adsabs.harvard.edu/abs/1960ApJ...131..442S (visited on 2021-06-24), doi:10.1086/146849.

SLH+95

C. Stalnaker, B. L. Lamb, J. Henriksen, K. Bovee, and J. Bartholow. The Instream Flow Incremental Methodology - A Primer for IFIM. Number 29 in Biological Report. National Biological Service, U.S. Department of the Interior, Opler, Paul A. and Rockwell, Elizabeth D. and Zuboy, James R. and Cox, Jerry D. and Harris, Deborah K. (eds.), Washington, D.C., USA, March 1995. URL: www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA322762.

Sto50

G.G. Stokes. On the effect of the internal friction of fluids on the motion of pendulums. In Transactions of the Cambridge Philosophical Society, volume IX, pages 99. Cambridge, UK, 1850. URL: http://mural.uv.es/daroig/documentos/stokes1850.pdf.

Str23

Albert Strickler. Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen für Ströme, Kanäle und geschlossene Leitungen [Contributions to the question of the velocity formula and the roughness figures for streams, channels and closed pipes]. Mitteilungen des Eidgenössischen Amtes für Wasserwirtschaft, Switzerland, 16:357, 1923.

TSVM95

A.M. Talmon, N. Struiksma, and M.C.L.M. Van Mierlo. Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. Journal of Hydraulic Research, 33(4):495–517, July 1995. Publisher: Taylor & Francis. URL: https://doi.org/10.1080/00221689509498657 (visited on 2021-08-04), doi:10.1080/00221689509498657.

TK98

G. W. Tchamen and R. A. Kahawita. Modelling wetting and drying effects over complex topography. Hydrological Processes, 12(8):1151–1182, 1998. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-1085%2819980630%2912%3A8%3C1151%3A%3AAID-HYP676%3E3.0.CO%3B2-Y, doi:10.1002/(SICI)1099-1085(19980630)12:8<1151::AID-HYP676>3.0.CO;2-Y.

Tor09

Eleuterio F. Toro. The HLL and HLLC Riemann Solvers. In Eleuterio F. Toro, editor, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, pages 315–344. Springer, Berlin, Heidelberg, Germany, 2009. URL: https://doi.org/10.1007/b79761_10 (visited on 2021-06-24), doi:10.1007/b79761_10.

TNW12

Jeff A. Tuhtan, Markus Noack, and Silke Wieprecht. Estimating stranding risk due to hydropeaking for juvenile European grayling considering river morphology. KSCE Journal of Civil Engineering, 16(2):197–206, 2012. URL: https://doi.org/10.1007/s12205-012-0002-5, doi:10.1007/s12205-012-0002-5.

vR19

L. C. van Rijn. Critical movement of large rocks in currents and waves. International Journal of Sediment Research, 34(4):387–398, August 2019. URL: https://www.sciencedirect.com/science/article/pii/S100162791830177X (visited on 2021-06-25), doi:10.1016/j.ijsrc.2018.12.005.

VR84a

Leo C. Van Rijn. Sediment Transport, Part II: Suspended Load Transport. Journal of Hydraulic Division, 110(11):1613–1641, 1984. URL: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281984%29110%3A11%281613%29, doi:10.1061/(ASCE)0733-9429(1984)110:11(1613).

VR84b

Leo C. Van Rijn. Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, 110(10):1431–1456, 1984. doi:10.1061/(ASCE)0733-9429(1984)110:10(1431).

VK30

Theodor Von Karmàn. Mechanische ähnlichkeit und Turbulenz [Mechanical similarity and turbulence]. In Third International Congress for Applied Mechanics, volume 1, pages 79–93. Stockholm, 1930.

WBDS10

Joseph M. Wheaton, James Brasington, Stephen E. Darby, and David A. Sear. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms, 35(2):136–156, 2010. URL: http://dx.doi.org/10.1002/esp.1886, doi:10.1002/esp.1886.

WH94

Patricia L. Wiberg and Courtney K. Harris. Ripple geometry in wave-dominated environments. Journal of Geophysical Research: Oceans, 99(C1):775–789, 1994. URL: https://agupubs.pericles-prod.literatumonline.com/doi/abs/10.1029/93JC02726 (visited on 2021-08-04), doi:10.1029/93JC02726.

Wil93

Peter Wilcock. Critical shear stress of natural sediments. Journal of Hydraulic Engineering, 119:491–505, 1993.

WC03

Peter R. Wilcock and Joanna C. Crowe. Surface-based Transport Model for Mixed-Size Sediment. Journal of Hydraulic Engineering, 129(2):120–128, 2003. Publisher: American Society of Civil Engineers. URL: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%282003%29129%3A2%28120%29 (visited on 2021-08-03), doi:10.1061/(ASCE)0733-9429(2003)129:2(120).

WBH02

C.A.M.E. Wilson, P.D. Bates, and J.-M. Hervouet. Comparison of turbulence models for stage-discharge rating curve prediction in reach-scale compound channel flows using two-dimensional finite element methods. Journal of Hydrology, 257(1):42–58, 2002. URL: https://www.sciencedirect.com/science/article/pii/S0022169401005534, doi:10.1016/S0022-1694(01)00553-4.

Woh00

Ellen E Wohl. Mountain rivers. Volume 14. American Geophysical Union, Washington, DC, 2000. ISBN 0-87590-318-5.

WP06

Miguel Wong and Gary Parker. Reanalysis and Correction of Bed-Load Relation of Meyer-Peter and Müller Using Their Own Database. Journal of Hydraulic Engineering, 132(11):1159–1168, 2006. doi:10.1061/(ASCE)0733-9429(2006)132:11(1159).

Yal71

M.S. Yalin. Theory of hydraulic models. Volume 266 of Civil Engineering Hydraulics. Macmillan, London, 1971.

Yal77

M.S. Yalin. Mechanics of sediment transport. Volume 2. Pergamon press Oxford, Oxford and New York, 1977.

YBR18

Weiwei Yao, Minh Duc Bui, and Peter Rutschmann. Development of eco-hydraulic model for assessing fish habitat and population status in freshwater ecosystems. Ecohydrology, 11(5):1–17, 2018. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/eco.1961, doi:10.1002/eco.1961.

YWZ+09

G. Yu, Z. Wang, K. Zhang, T. Chang, and H. Liu. Effect of incoming sediment on the transport rate of bed load in mountain streams. International Journal of Sediment Research, 24(3):260–273, 2009. doi:10.1016/S1001-6279(10)60002-9.

ZS10

Jean-Marie Zokagoa and Azzeddine Soulaïmani. Modeling of wetting–drying transitions in free surface flows over complex topographies. Computer Methods in Applied Mechanics and Engineering, 199(33):2281–2304, 2010. URL: https://www.sciencedirect.com/science/article/pii/S0045782510001003 (visited on 2021-06-24), doi:10.1016/j.cma.2010.03.023.

ZF94

J.A. Zyserman and J. Fredsøe. Data Analysis of Bed Concentration of Suspended Sediment. Journal of Hydraulic Engineering, 120(9):1021–1042, September 1994. Publisher: American Society of Civil Engineers. URL: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281994%29120%3A9%281021%29 (visited on 2021-08-06), doi:10.1061/(ASCE)0733-9429(1994)120:9(1021).

USACoEngineeers16

U.S. Army Corps of Engineeers. Hydrologic Engineering Centers River Analysis System (HEC-RAS). U.S. Army Corps of Engineeers (USACE), Davis, CA, USA, 2016. URL: http://www.hec.usace.army.mil/software/hec-ras/.